Skip to main content

Single or dual microfocus X-ray diffractometer for all your crystallography needs

A fast and agile single crystal X-ray diffractometer for small molecule 3D structure analysis

  • Extremely high performance due to bright source, noise-free X-ray detector and fast goniometer speeds
  • Continuously variable divergence slit option lets you resolve reflections from long unit cells.
  • Minimal downtime with longer X-ray tube lifetime - supported by online diagnostics and troubleshooting
  • Compact design to fit in your laboratory
XtaLAB Synergy-S
Small Molecule, Protein
Academic research, Chemistry, Materials science, Geology & minerals, Pharmaceuticals
Chemical crystallography, Protein crystallography, Single crystal X-ray diffraction

With your success utmost in our minds, we have developed the XtaLAB Synergy-S X-ray diffractometer for single crystal X-ray diffraction. Using a combination of leading edge components and user-inspired software tied together through a highly parallelized architecture, the XtaLAB Synergy-S produces fast, precise data in an intelligent fashion. The system is based around the PhotonJet-S series of microfocus X-ray sources that incorporate continuously variable divergence slits. These third generation sources have been designed to maximize X-ray photons at the sample by using a combination of new optics, new, longer life, tubes and an improved alignment system. PhotonJets are available in Cu, Mo or Ag wavelengths in either a single or dual source configuration. The XtaLAB Synergy-S single crystal X-ray diffractometer comes with kappa goniometer that incorporates fast motor speeds and a unique telescopic two-theta arm to provide total flexibility for your diffraction experiment. The system is also equipped with your choice of HPC X-ray detector, including the HyPix-6000HE, PILATUS3 R 200K, PILATUS3 R 300K or EIGER 1M.

Specifications

Product name XtaLAB Synergy-S
Technique Single crystal X-ray diffraction
Benefit 3D structural analysis of molecules 
Technology Single crystal X-ray diffractometer
Core attributes Single or dual X-ray source diffractometer with hybrid pixel array detector and kappa goniometer
Core options Oxford Cryostream Cooler and XtalCheck-S
Computer External PC, MS Windows® OS
Core dimensions 1300 (W) x 1875 (H) x 850 (D) mm
Mass  550 kg (core unit)
Power requirements 1Ø, 90-130V 15A or 180-260V 4A

Accessories

The following accessories are available for this product
ELement ANalyzer

The ELement ANalyzer is a state-of-the-art attachment that allows us to obtain qualitative information on elements in a single crystal at the same time as X-ray diffraction data collection for a single crystal structural analysis. By measuring the X-ray fluorescence spectrum emitted during X-ray diffraction experiments with the ELement ANalyzer, it becomes possible to perform elemental analysis on a single grain of crystal. The ELement ANalyzer can be used for confirmation the presence of central metal(s) in a mononuclear or polynuclear complex or solvent in a crystal for small molecule X-ray crystallography. There is a broad range of possible applications of the ELement ANalyzer in scientific fields.

ELement ANalyzer

ELement ANalyzerは単結晶試料の回折測定と元素分析(定性分析)を並行して行える画期的なアタッチメントです。回折測定中に試料から放出される蛍光X線をELement ANalyzerで計測することにより、結晶に含まれている元素を同定します。Mo線源の装置に組み合わせた場合、P(リン)より重い元素であれば、同定することができます*。RAPIDシリーズやSaturnシリーズなどの単結晶X線回折装置に組み合わせることができ、既存の装置を改造することなく取り付けが可能です。錯体の中心金属の有無や種類、結晶溶媒の有無を数分で確認できるため、無駄となる測定を減らし、研究を効率的に進めることができます。また、多核錯体の確認にも威力を発揮します。

Oxford Cobra

The Oxford Cobra is the non-liquid nitrogen Cryostream. Combining the efficiency of a Cryostream with the advantages of a non-liquid system, the Cobra offers the ultimate solution for both macromolecular and small molecule crystallography.

Oxford Cryostream 800

The 800 Series Cryostream is the most robust, efficient and user-friendly liquid nitrogen based low temperature system available today. Specific features include a superior laminar flow system, meaning virtually zero risk of icing, extremely quiet running and a fast-start system resulting in a cool-down time to 100K of just 20 minutes.

XtalCheck

The XtalCheck system includes software that facilitates both visual and diffraction imaging of crystallization experiments. With the XtalCheck system, one can easily survey many crystallization experiments by eliminating the need to harvest and cryo-cool samples. Moreover, one can perform serial crystallography experiments, by collecting data from multiple crystals, to achieve complete data sets that can be used for structure solution.

XtalCheck

手動タイプ PlateMate

  • シンプルかつ軽量で扱いやすいデザイン
    ゴニオメーターヘッドと同じマウント機構を採用。既存のX線回折装置に簡単に取り付けることができます。SBS規格に準拠した結晶化プレートに対応可能で、MiTeGen社製 In Situ–1 Crystallization Plateでの測定に適したデザインです。
  • 簡単かつ正確なセンタリング機構
    水平および垂直方向に搭載した目盛付きのレールに沿って結晶化プレートを動かすことで、すべてのウェルに対して簡単にセンタリングすることができます。また、微調整機構により、微小な結晶であっても正確なセンタリングが可能です。
  • 結晶化プレート中の結晶を測定
    見分けのつきにくいタンパク質結晶と塩・沈殿剤などの結晶を、ドロップ内から取り出すことなく迅速に判別し、さらに分解能などの品質をチェックできます。
  • 構造解析用のデータ収集も可能
    スクリーニング目的のX線回折像取得のみならず、構造解析用の回折強度データの収集も可能です。結晶化溶媒から取り出すだけで損傷してしまうような特殊な結晶も、その環境下で測定できます。

電動タイプ XtalCheck

  • GUIからコントロール
    すべての機能はGUIから操作できます。
    モーター制御により、微小な結晶であっても正確なセンタリングが可能です。また、複数のウェルや、ドロップ内の複数の結晶を事前に指定することで、簡単な操作で複数の結晶を一度に評価できます。

Papers published using the XtaLAB Synergy-S

  1. Lin Lim F P, Tan K C, Luna G, Tiekink E R T, Dolzhenko A V. “ A new practical synthesis of 3-amino-substituted 5-aminopyrazoles and their tautomerism.” Tetrahedron (2019), 75(15): 2314-2321. https://www.sciencedirect.com/science/article/pii/S0040402019302625
  2. Wiscons R A, Coropceanu V, Matzger A J. “Quaternary Charge-Transfer Solid Solutions: Electronic Tunability through Stoichiometry.” Chem. Mater. (2019), available online 13 March https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b00502
  3. Takahashi Y, Uehara T, Matsuhashi C, Yamaji M, Mutai T, Yoshikawa I, Houjou H, Kitagawa K, Suenobu T, Maki S, Hirano T. “Spectroscopic properties of push-pull 2-(4-carboxyphenyl)-6-dimethylaminobenzothiazole derivatives in solution and the solid state.” J. Photochem. Photobio. A:Chem. (2019), 376: 324-332. https://www.sciencedirect.com/science/article/abs/pii/S1010603019301613
  4. Konkankit C C, Vaughn B A, MacMillan S N, Boros E, Wilson J J. “Combinatorial Synthesis to Identify a Potent, Necrosis-Inducing Rhenium Anticancer Agent.” Inorg. Chem. (2019), available online 22 Feb https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.8b03552
  5. King A P, Gellineau H A, MacMilan S N, Wilson J J. “Physical properties, ligand substitution reactions, and biological activity of Co (III)-Schiff base complexes.” Dalton Transactions (2019), just accepted 11 Jan. https://pubs.rsc.org/en/content/articlelanding/2019/dt/c8dt04606a/unauth...
  6. Grey I E, Mumme W G, Downes P J, Grguric B A, Gable R W. “Segelerite from the mount Deverell variscite deposit, Western Australia. Hydrogen bonding and relationship to jahnsite.” European Journal of Mineralogy (2019), available online 10 Jan https://www.ingentaconnect.com/content/schweiz/ejm/pre-prints/content-ej...
  7. Malmberg R, Bachmann M, Blacque O, Venkatesan K. “Thermally Robust and Tunable Phosphorescent Gold(III) Complexes Bearing (N^N)-type Bidendates as Ancillary Chelates.” Chemistry – A European Journal (2019), available online 7 Jan https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.201805486
  8. Tan Y J, Tan Y S Yeo C I Chew J, Tiekink E R T. “In vitro anti-bacterial and time kill evaluation of binuclear tricyclohexylphosphanesilver(I) dithiocarbamates, {Cy3PAg(S2CNRR’)}2.” J. Inorg. Chem. (2019) 192: 107-118 https://www.sciencedirect.com/science/article/pii/S016201341830535X
  9. Ali M O, Lasseter J C, Żurawiński R, Pietrzak A, Pecyna J, Wojciechowski J, Friedli A C, Pociecha D, Kaszyński P. “Thermal and Photophysical Properties of Highly Quadrupolar Liquid-Crystalline Derivatives of the [closo-B12H12]2- Anion.” Chemistry – A European Journal (2018) just published 17 December https://onlinelibrary.wiley.com/doi/full/10.1002/chem.201805392
  10. Zhen J, Zhou W, Chen M, Li B, Jia L, Wang M, Yang S. “Pyridine-functionalized fullerene additive enabling coordination interactions with CH3NH3PbI3 perovskite towards highly efficient bulk heterojunction solar cells.” Journal of Materials Chemistry A (2019), 7: 2754-2763 https://pubs.rsc.org/en/content/articlelanding/2019/ta/c8ta12206g/unauth...
  11. Fu J, Ren Z, Bacsa J, Musaev D G, Davies H M L. “Desymmetrization of cyclohexanes by site- and stereoselective C-H functionalization.” Nature Letters (2018), 564: 395-399 https://www.nature.com/articles/s41586-018-0799-2#Sec4
  12. Akagi S, Horiguchi T, Fujii S, Kitamura N. “Terminal Ligand (L) Effects on Zero-Magnetic-Field Splitting in the Excited Triplet States of [{Mo6Br8}L6]2- (L= Aromatic carboxylates).” Inorg. Chem. (2019), 58(1): 703-714 https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.8b02881
  13. Molcanov K, Jelsch C, Landeros B, Hernández-Trujilo J, Wenger E, Stilinović V, Kojic-Prodic B, Escudero-Adán E C. “Partially covalent two-electron/multicentric bonding between semiquinone radicals.” Cryst. Growth Des. (2019) 19: 391-402 https://pubs.acs.org/doi/abs/10.1021/acs.cgd.8b01484
  14. Ogawa A, Oohora A, Hayashi T. “Synthesis and Characterization of meso-Substituted Cobalt Tetrahydrocorrin and Evaluation of its Electrocatalytic Behavior Toward CO2 Reduction and H2 Evolution.” Inorg. Chem. (2018) 57(23): 14644-14652 https://pubs.acs.org/doi/full/10.1021/acs.inorgchem.8b02333
  15. Yang Y, Zhang S-S, Zhao Q-Q, Wang X-P, Tung C-H, Sun D. “Construction of Crystalline One-Dimensional Infinite Argentophilic Silver Alkynyl Assemblies and their Luminescence Properties.” Eur. J. Inorg. Chem. (2018), 47 https://onlinelibrary.wiley.com/doi/abs/10.1002/ejic.201800998
  16. Lipowska M, Klenc J, Taylor A T, Marzilli L G. “fac-99m Tc/Re-tricarbonyl complexes with tridendate aminocarboxyphosphonate ligands: suitability of the phosphonate group in chelate ligand design of new imaging agents.” Inorg. Chim. Acta (2019) 486: 529-537 https://www.sciencedirect.com/science/article/pii/S0020169318314464
  17. Gradstein F M, Waskowska A, Kopaevich L, Watkins D K, Friis H, Pérez Panera J. “Berriasian planktonic foraminifera and calcareous nannofossils from Crimea Mountains, with reference to microfossil evolution.” Swiss Journal of Palaeontology (2018), published online 7 November https://link.springer.com/content/pdf/10.1007%2Fs13358-018-0175-8.pdf
  18. Alexandropoulos D I, Alaimo A A, Sun D, Stamatatos T C. “A New {Dy5} Single-Molecule Magnetic Bearing the Schiff Base Ligand N-Naphthalidene-2-amino-5-chlorophenol.” Magnetochemistry (2018) 4(4): 48 https://doi.org/10.3390/magnetochemistry4040048
  19. Getmanenko Y A, Mullins C S, Nesterov V N, Lake S, Risko C, Johnston-Halperin E. “Magnetic ordering in a vanadium-organic coordination polymer using a pyrrolo[2,3-d:5,4-d’]bis(thiazole)-based ligand.” RSC Adv. (2018) 8: 36223-36232 https://pubs.rsc.org/en/content/articlehtml/2018/ra/c8ra05697h
  20. Worrell A, Sun D, Mayans J, Lampropoulous C, Escuer A, Stamatatos T C. “Oximato-Based Ligands in 3d/4f-Metal Cluster Chemistry: A Family of {Cu3Ln} Complexes with a “Propeller”-like Topology and Single-Molecule Magnetic Behavior.” Inorg. Chem. (2018) 57(21): 13944-13952 https://pubs.acs.org/doi/ipdf/10.1021/acs.inorgchem.8b02495
  21. VanGelder L E, Petel B E, Nachtigall O, Martinez G, Brennessel W W, Matson E M. “Organic Functionalization of Polyoxovanadate-alkoxide Clusters: Improving the Solubility of Multimetallic Charge Carriers for Nonaqueous Redox Flow Batteries.” ChemSusChem (2018), first published 15 Oct https://onlinelibrary.wiley.com/doi/pdf/10.1002/cssc.201802029
  22. Tan Y S, Chun, H Z, Jotani M M, Tiekink E R T. “Steric control of supramolecular association in structures of Zn(S2COR)2 with N,N’-bis(pyridine-4ylmethyl)oxalamide.” Z. Kristallogr. Cryst. Mater. (2018), first published 8 Oct https://doi.org/10.1515/zkri-2018-2120
  23. Pejić J, Vušak D, Szalontai G, Prugovečki B, Mrvoš-Sermek D, Matković-Čalogović D, Sabolović J. “Disorder at the Chiral Cα Center and Room Temperature Solid-State cis-trans Isomerization; Synthesis and Structural Characterization of Copper(II) Complexes with D-allo, L-Isoleucine.” Crys. Growth Des. (2018) 18(9): 5138-5154 https://pubs.acs.org/doi/abs/10.1021/acs.cgd.8b00589
  24. Siu J C, Sauer G S, Saha A, Macey R L, Fu N, Chauviré T, Lancaster K M, Lin S. “Electrochemical Azidooxygenation of Alkenes Mediated by a TEMPO-N3 Charge-Transfer Complex.” J. Am. Chem. Soc. (2018) 140(39): 12511-12520 https://pubs.acs.org/doi/10.1021/jacs.8b06744
  25. Kadassery K J, MacMillan S N, Lacy D C. “Biphosphine phenol and phenolate complexes of Mn (I): manganese(I) catalyzed Tishchenko reaction.” Dalton Transactions (2018) 47: 12652-12655https://pubs.rsc.org/en/content/articlelanding/2018/dt/c8dt02933d#!divAb...
  26. Stone I B, Jermaks J, MacMillan S N, Lambert T H. “The Hydrazine-O2 Redox Couple as a Platform for Organocatalytic Oxidation: Benzo[c]cinnoline-Catalyzed Oxidation of Alkyl Halides to Aldehydes.” Angew. Chem. Int. Ed. (2018) 57(38) https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201807134
  27. Meyer R L, Brennessel W W, Matson E M. “Synthesis of a gallium-functionalised polyoxovanadate-alkoxide cluster: Toward a general route for a heterometal installation.” Polyhedron (2018), 156: 303-311 https://www.sciencedirect.com/science/article/pii/S027753871830576X?via%...
  28. Ravat P, Šolomek T, Häussinger D, Blacque O, Juríček M. “Dimethylcethrene: A Chiroptical Diradicaloid Photswitch.” J. Am.. Chem Soc. (2018) 140: 10839 – 10847 https://pubs.acs.org/doi/pdf/10.1021/jacs.8b05465
  29. Shapiro J A, Morrison K R, Chodisetty S S, Musaev D G, Wuest W M. “Biologically Inspired Total Synthesis of Ulbactin F, an Iron-Binding Natural Product.” Org. Lett. (2018), 20(18): 5922-5926 https://pubs.acs.org/doi/abs/10.1021/acs.orglett.8b02599
  30. Zhao C, Schwartz T, Stöger B, White F J, Chen J, Ma D, Fröhlich J, Kautny P. “Controlling excimer formation in indolo[3,2,1-jk]carbazole/9H-carbazole based host materials for RGB PhOLEDs” J. Mat. Chem. C. (2018), 6: 9914-9924 https://pubs.rsc.org/en/content/articlepdf/2018/tc/c8tc03537g
  31. Movassaghi S, Leung E, Hanif M, Lee B Y T, Holtkamp H U, Tu J K Y, Söhnel T, Jamieson S M F, Hartinger C G. “A Bioactive L-Phenylalanine-Derived Arene in Miltitargeted Organoruthenium Compounds: Impact on the Antiproliferative Activity and Mode of Action” Inorg. Chem (2018) 57(14): 8521-8529 https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.8b01187
  32. Su Y, Su H-F, Wang Z, Li Y, Schein S, Zhao Q, Wang X, Tung C-H, Sun D. “Three Silver Nests Capped by Thiolate/Phenylphosphonate.” Chemistry:A European Journal (2018), 24(56): 15096-15103 https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.201803203
  33. Wu Y, Halat D M, Wei F, Binford T, Seymour I D, Gaultois M W, Shaker S, Wang J, Grey C P, Cheetham A K. “Mixed X-site formate-hypophosphite hybrid perovskites.” Chemistry: A European Journal (2018), 24(44): 11309-11313 https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.201803061
  34. Morgan M T, Yang B, Harankhedkar S, Nabatilan A, Bourassa D, McCallum A M, Sun F, Wu R, Forest C R, Fahrni C J. “Stabilization of aliphatic phosphines by auxillary phosphine sulfides offers zeptomolar affinity and unprecedented selectivity for probing biological Cu(II).” Angew. Chem (2018) 130(31): 9859-9863 https://onlinelibrary.wiley.com/doi/abs/10.1002/ange.201804072
  35. Scholl K, Dillashaw J, Timpy E, Lam Y, DeRatt L, Benton T R, Powell J P, Houk K N Morgan J M. “Quinine-Promoted, Enantioselective Boron-Tethered Diels-Alder Reaction by Anomeric Control of Transition-State Conformation.” J. Org Chem. (2018) 83: 5756-5765 https://pubs.acs.org/doi/abs/10.1021/acs.joc.8b00938
  36. Akondi S M, Gangireddy P, Pickel T C, Liebeskind L S. “Aerobic, Diselenide-Catalyzed Redox Dehydration: Amides and Peptides.” Org. Lett. (2018) 20: 538-541 https://pubs.acs.org/doi/10.1021/acs.orglett.7b03620
  37. Cundari T R, Jacobs B P, MacMillan S N, Wolczanski P T. “Dispersion forces play a role in (Me2IPr)Fe(=NAd)R2 (Ad = adamantly; R=neoPe, 1-nor) insertions and Fe-R bond dissociation enthalpies (BDEs)” Dalton Transactions (2018) 47: 6025-6030 http://pubs.rsc.org/en/Content/ArticleLanding/2018/DT/C7DT04145D#!divAbs...
  38. Vaccarello D N, O’Connor K S, Iacono P, Rose J M, Cherian A E, Coates G W. “Synthesis of Semicrystalline Plyolefin Materials: Precision Methyl Branching via Stereoretentive Chain Walking.” J. Am. Chem. Soc. (2018) 140(20): 6208-6211 https://pubs.acs.org/doi/10.1021/jacs.8b02963
  39. Molčanov K, Mou Z, Kertesz M, Kojić-Prodić B, Stalke D, Demeshko S, Šantić A, Stilinović. “Two-electron / multicenter – pancake bonding in π-stacked trimers in a salt of tetrachloroquinone anion.” Chemistry: A European Journal, (2018) 24(33): 8292-8297 https://onlinelibrary.wiley.com/doi/pdf/10.1002/chem.201800672
  40. Milić J, Zalibera M, Talaat D, Nomrowski J, Trapp N, Ruhlmann L, Boudon C, Wenger O S, Savitsky A, Lubitz W, Diederich F. “Photoredox-Switchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding.” Chemistry: A European Journal, (2017) 24(6): 1431-1440 https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.201704788
  41. Haberland S, Finke A D, Kerisit N, Katan C, Trolez Y, Gawel P, Leito I, Lõkov M, Järviste R, Kaupmees K, Trapp N, Ruhlmann L, Boudon C, Himmel D, Diederich F. “Enhancement of Push-Pull Properties of Pentafulvene and Pentafulvene Derivatives by Protonation at Carbon.” Eur J. Org. Chem., (2018) 6:739-749 https://onlinelibrary.wiley.com/doi/abs/10.1002/ejoc.201800039
  42. Hao W, Harenberg J H, Wu X, MacMilan S N, Lin S. “Diastereo- and Entatioselective Formal [3 + 2] Cycloaddition of Cyclopropyl Ketones and Alkenes via Ti-Catalyzed radical Redox Relay” J. Am. Chem. Soc. (2018) 140(10): 3514-3517 https://pubs.acs.org/doi/10.1021/jacs.7b13710
  43. Ye K-Y, Pombar G, Fu N, Sauer G S, Keresztes I, Lin S. “Anodically Coupled Electrolysis for the Heterodifunctionalization of Alkenes.” J. Am. Chem. Soc. (2018) 140(7): 2438-2441 https://pubs.acs.org/doi/10.1021/jacs.7b13387
  44. Junker A K, Hill L R, Thompson A L, Faulkner S, Sørensen T J. “Shining light on the antenna chromophore in lanthanide based dyes.” Dalton Trans., (2018) 47: 4794-4803 http://dx.doi.org/10.1039/C7DT04788F
  45. Nievergelt P P, Babor M, Čejka J, Spingler B. “A high-throughput screening method for the nano-crystallization of salts of organic cations.” Chem. Sci., (2018) 9: 3716-3722 http://pubs.rsc.org/en/content/articlepdf/2018/sc/c8sc00783g. An additional news article is available at https://phys.org/news/2018-03-method-medication.html
  46. Sarkar K, Dastidar P. “Supramolecular hydrogel derived from a C3-symmetric boronic acid derivative for stimuli-responsive release of insulin and doxorubicin.” Langmuir (2018) 34(2): 685-692. http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.7b03326)
  47. Urgiles J, Nathan S R, MacMillan S N, Wilson J J. “Dinuclear nitrido-bridged ruthenium complexes bearing diimine ligands.” Dalton Trans. (2017) 46: 14256-14263. http://pubs.rsc.org/en/content/articlelanding/2017/dt/c7dt03085a#!divAbs...
  48. Hao W, Wu X, Sun J Z, Siu J C, MacMillan S, Lin S. “Radical Redox-Relay Catalysis: Formal [3+2] Cycloaddition of N-Acylaziridines and Alkenes.” J. Am. Chem. Soc. (2017) 139 (35): 12141-12144. http://pubs.acs.org/doi/abs/10.1021/jacs.7b06723
  49. Phukkaphan N, Cruickshank D L, Murray K S, Phonsri W, Harding P, Harding D. J. “Hysteretic spin crossover driven by anion conformational change.” Chem. Comm. (2017) 53: 9801-9804. http://pubs.rsc.org/en/content/articlelanding/2017/cc/c7cc05998a#!divAbs...
  50. Riwar L-J, Trapp N, Kuhn B, Diederich F. “Substituent Effects in Parallel-Displaced π–π Stacking Interactions: Distance Matters.” Angew. Chem. Int. Ed. (2017) 56 (37): 11252-11257. http://onlinelibrary.wiley.com/wol1/doi/10.1002/anie.201703744/full
  51. Diederich F, Trapp N, Wörle M. “Small Molecule Crystallography in the Laboratory of Organic Chemistry at ETH Zürich.” Israel Journal of Chemistry (2017) 57 (1-2): 39-54. http://onlinelibrary.wiley.com/doi/10.1002/ijch.201600030/full
  52. Gropp C, Husch T, Trapp N, Reiher M, Diederich F. “Dispersion and Halogen-Bonding Interactions: Binding of the Axial Conformers of Monohalo- and (±)-trans-1,2-Dihalocyclohexanes in Enantiopure Alleno-Acetylenic Cages.” J. Am. Chem. Soc. (2017) 139 (35): 12190-12200 http://pubs.acs.org/doi/pdf/10.1021/jacs.7b05461