Skip to main content

Phasing protein structures

Solve the phasing problem at home with Cr-radiation

The single-wavelength anomalous dispersion method (SAD) is frequently used to solve protein structures from synchrotron data by taking advantage of the tunable wavelength to collect heavy atom derivatives near the metal's absorption edge. For methionine-containing proteins, selenomethionine derivates may be prepared to take advantage of the anomalous Se signal.

However, some proteins will not crystallize as SeMet derivatives, and not all proteins contain methionine. Sulfur, on the other hand, is present in almost all proteins in cysteine residues. The process of structure solution is greatly simplified if SeMet substitution or heavy-atom soaks are not necessary.
The structure of crambin was solved in 1981 using the resolved atom S-SAD method and Cu Kα radiation and a number of other proteins have been solved using Cu or synchrotron radiation tuned to near-Cu wavelengths.

Phasing protein structures

Rigaku recommends the following systems:


  • Fast, flexible single crystal X-ray diffractometer with the latest generation sources and HPC X-ray detectors, perfect for any crystallography lab.

  • Single crystal X-ray diffractometer with high-flux microfocus rotating anode X-ray generator

  • Versatile and high-flux dual-wavelength (DW) X-ray diffractometer with HPC X-ray detector for multipurpose diffraction experiments

  • Automated tool for performing in situ crystallography experiments on existing X-ray diffractometers

  • Automated crystal transport, orientation and retrieval robot

  • Single crystal X-ray diffractometer with custom enclosure and flexibility for easy integration of accessory components

  • High resolution X-ray detectors for X-ray diffractometers from DECTRIS